

Bachelor and Master theses at the Institute of Biomechanics

Presented by: Manuel P. Kainz

Head of the Institute: Professor Gerhard Holzapfel

Website: https://www.biomech.tugraz.at/

Scan for more topics and the latest updates!

Bachelor and Master projects with Med Uni Graz

Topic 1

 Influence of aging on mechanical properties of the pelvic floor and support system of the uterus

Responsibilities and tasks

 Performing and evaluating mechanical experiments and microstructure analysis

Topic 2

 Quasi-static and dynamic mechanical fatigue testing of human boneimplant-systems and soft tissues to improve clinical interventions

Responsibilities and tasks

Planning, performing and analyzing mechanical experiments

Topic 3

Workflow for standardized testing of human (ultra) soft tissues

Responsibilities and tasks

 Optimization of control system parameters for different tissues and experimental validation

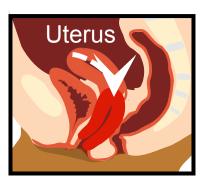


Figure 1: During uterine prolapse, the uterus descends from its original position. Image curtesy: Andreas Bauer

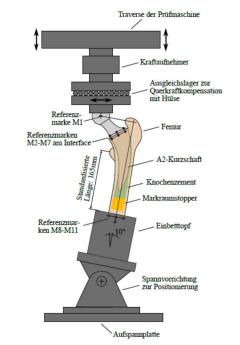


Figure 2: Fatigue tests of hip endoprostheses

Bachelor project/Master project

Topic 1

 'Mechanical characterization of rabbit's myocardium under shear and compression/tension test'

Requirements

- Hands-on lab experience
- Responsibilities and tasks
 - Testing of the myocardium tissue and related data analysis

Topic 2

 'Analysis of biaxial mechanical data related to influence of hyperhomocysteinemia in atherosclerosis development'

Requirements

- Good programming skills
- Responsibilities and tasks
 - Definition of a code structure for analysis of experimental data

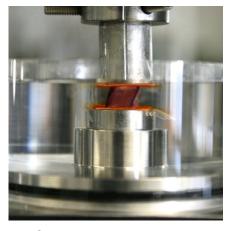


Figure for topic 1: Representative image of the experimental set-up used to test myocardium under shear

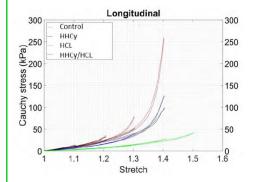
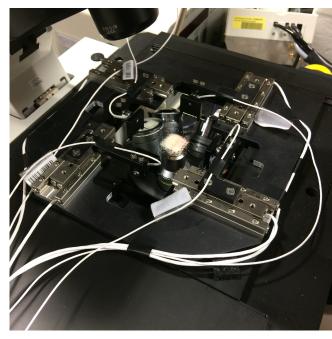


Figure for topic 2: Changes in tissue mechanical response as a function of hyperhomocysteinemia presence

Bachelor project

Topic


 Reverse engineering – specification, documentation, and user manual of already existing biaxial extension device

Requirements

- Basic knowledge of sensors and actuators design
- Basic knowledge of LabView software

Responsibilities and tasks

- Specification of already existing device for biaxial extension tests
- Documentation of the hardware and software used
- Preparation of a user manual

Device for biaxial extension tests (Pukaluk et al., 2022)

Bachelor project/Master project

Topic 1

- 'Modeling the insertion of microneedles in human skin'
- Responsibilities and tasks
 - Develop a FE model of skin microneedle insertion
 - Knowledge of computational mechanics and FE method

Topic 2

- 'Modeling the fracture mechanics of polymeric scaffolds'
- Responsibilities and tasks
 - Developing a FE model of crack propagation

Topic 3

- 'The intricacies of simple shear in soft tissues'
- Responsibilities and tasks
 - Theoretical analysis of simple shear in nonlinear elasticity

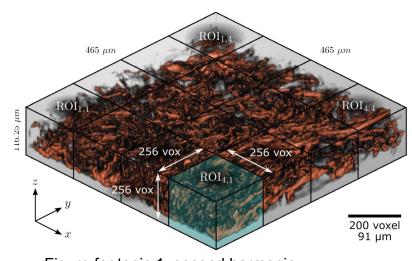


Figure for topic 1: second harmonic generation tomography of collagen fibers in the human skin. Taken from:
Alberini, ..., Terzano et al., 2024, Sci.Rep.

Master project

Topic

Perfusion experiments on brain tissue and biomimetic hydrogels

Requirements

- Hands-on lab experience with soft materials
- Technical experience in CAD design
- Experience with design/fabrication of 3D prints

Responsibilities and tasks

- Independent preparation of biological tissues brain tissue-mimicking hydrogels
- Support during technical development and advancement of the experimental setup

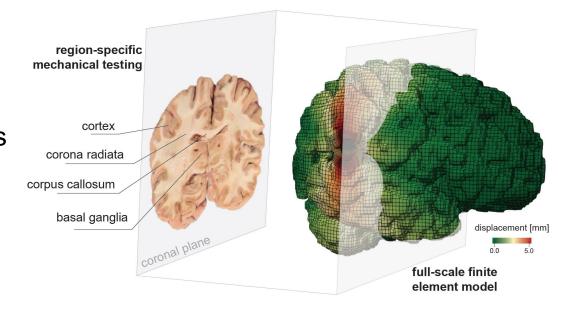


Figure: Human brain slice and full-scale computational model

Bachelor and Master theses at the Institute of Biomechanics

Presented by: Manuel P. Kainz

Head of the Institute: Professor Gerhard Holzapfel

Website: https://www.biomech.tugraz.at/

Scan for more topics and the latest updates!

