1 Example (5 Points)

Let l^{2} be the vector space of all summable sequences, i.e.

$$
l^{1}=\left\{\left(x_{n}\right)_{n \in N}: \sum_{n=1}^{\infty}\left|x_{n}\right|<\infty\right\}
$$

Moreover, let

$$
\begin{aligned}
& \|\cdot\|: l^{1} \rightarrow \mathbb{R} \\
& \left(x_{n}\right)_{n \in N} \mapsto \sum_{n=4}^{\infty}\left|x_{n}\right| .
\end{aligned}
$$

Is this mapping a norm? Check all four requirements of a norm!

2 Example (5 Points)

Consider the vector space of polynomials in the interval $[-1,1]$ and the lincarly independent system of monomials $\left\{1 . x, x^{2}, \ldots\right\}$. Use the Gram-Schmidt orthonormalization procedure to determine the first two orthonormal polynomials with respect to the scalar product (Gegenbauer polynomials):

$$
(f, g)=\int_{-1}^{1} d x\left(1-x^{2}\right)^{1 / 2} f(x) g(x)
$$

Hint: Make use of trigonometric substitutions of the form $x=\sin u$ to solve the integrals.

3 Example (5 Points)

Let $f(x)=|x|$ for $x \in[-\pi, \pi]$.

1. (4 Points) Determine the real Fourier series of the function f.
2. (1 Point) Does the Fourier series converge uniformly? Explain your answer!

4 Example (5 Points)

Calculate the Fourier transform of the function

$$
f(x)= \begin{cases}\sin (x) & \text { if } x \in|-\pi, \pi| \\ 0 & \text { else }\end{cases}
$$

Useful formulas: For $\alpha, \beta \in \mathbb{R}$ holds

1. $2 \sin (\alpha) \cos (\beta)=\sin (\alpha+\beta)+\sin (\alpha-\beta)$
2. $2 \cos (\alpha) \cos (\beta)=\cos (\alpha+\beta)+\cos (\alpha-\beta)$
3. and $\sin (\alpha)=\frac{e^{20}-e^{-+\alpha}}{2 i}$

This document was recreated using latex

